
ARTICLE IN PRESS
Information Sciences xxx (2004) xxx–xxx

www.elsevier.com/locate/ins
Time-series forecasting using flexible
neural tree model

Yuehui Chen a,*, Bo Yang a, Jiwen Dong a,
Ajith Abraham a,b

a School of Information Science and Engineering, Jinan University, 106 Jiwei Road,

Jinan 250022, PR China
b School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea

Received 30 June 2003; received in revised form 19 October 2004; accepted 19 October 2004
Abstract

Time-series forecasting is an important research and application area. Much effort has

been devoted over the past several decades to develop and improve the time-series fore-

casting models. This paper introduces a new time-series forecasting model based on the

flexible neural tree (FNT). The FNT model is generated initially as a flexible multi-layer

feed-forward neural network and evolved using an evolutionary procedure. Very often it

is a difficult task to select the proper input variables or time-lags for constructing a time-

series model. Our research demonstrates that the FNT model is capable of handing the

task automatically. The performance and effectiveness of the proposed method are eval-

uated using time series prediction problems and compared with those of related methods.

� 2004 Published by Elsevier Inc.

Keywords: Flexible neural tree model; Probabilistic incremental program evolution; Simulated

annealing; Time-series forecasting
0020-0255/$ - see front matter � 2004 Published by Elsevier Inc.

doi:10.1016/j.ins.2004.10.005

* Corresponding author.

E-mail addresses: yhchen@ujn.edu.cn (Y. Chen), yangbo@ujn.edu.cn (B. Yang), csmaster@

ujn.edu.cn (J. Dong), ajith.abraham@ieee.org (A. Abraham).

mailto:yhchen@ujn.edu.cn
mailto:yangbo@ujn.edu.cn
mailto:csmaster@
mailto:ajith.abraham@ieee.org

2 Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx

ARTICLE IN PRESS
1. Introduction

Artificial neural networks (ANNs) have been successfully applied to a num-

ber of scientific and engineering fields in recent years, i.e., function approxima-

tion, system identification and control, image processing, time series prediction

and so on [1,36–39]. A neural network�s performance is highly dependent on its
structure. The interaction allowed between the various nodes of the network is

specified using the structure. An ANN structure is not unique for a given prob-

lem, and there may exist different ways to define a structure corresponding to

the problem. Depending on the problem, it may be appropriate to have more

than one hidden layer, feedforward or feedback connections, or in some cases,

direct connections between input and output layer.

There have been a number of attempts to design neural network architec-

tures automatically. The early methods include constructive and pruning algo-
rithms [2–4]. The main disadvantage of these methods is that the topological

subsets are often searched using structural hill climbing methods instead of

the complete class of ANNs architecture available in the search space [5].

Recent tendencies to optimize ANN architecture and weights include EPNet

[6–8]and the NeuroEvolution of Augmenting Topologies (NEAT) [9]. Utilizing

a tree to represent a NN-like model is motivated by the work of Byoung-Tak

Zhang, where a method of evolutionary induction of the sparse neural trees

was proposed [10]. Based on the representation of neural tree, architecture
and weights of higher order sigma–pi neural networks were evolved by using

genetic programming and breeder genetic algorithm, respectively.

Time-series forecasting is an important research and application area. Much

effort has been devoted over the past several decades to develop and improve

the time-series forecasting models. Well established time series models include:

(1) linear models, e.g., moving average, exponential smoothing and the autore-

gressive integrated moving average (ARIMA); (2) nonlinear models, e.g., neu-

ral network models and fuzzy system models. Recently a tendency for
combining of linear and nonlinear models for forecasting time series has been

an active research area [11].

In this paper, a general and enhanced flexible neural tree (FNT) model is

proposed for time-series forecasting problem. Based on the pre-defined instruc-

tion/operator sets, a flexible neural tree model can be created and evolved. This

framework allows input variables selection, over-layer connections and differ-

ent activation functions for different nodes. The hierarchical structure is

evolved using probabilistic incremental program evolution algorithm (PIPE)
[12,13] with specific instructions. The fine tuning of the parameters encoded

in the structure is accomplished using simulated annealing (SA). The proposed

method interleaves both optimizations. Starting with random structures and

corresponding parameters, it first tries to improve the structure and then as

soon as an improved structure is found, it fine tunes its parameters. It then goes

Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx 3

ARTICLE IN PRESS
back to improving the structure again and, fine tunes the structure and rules�
parameters. This loop continues until a satisfactory solution is found or a time

limit is reached.

The paper is organized as follows: Section 2 gives the representation and cal-

culation of the flexible neural tree model. A hybrid learning algorithm for

evolving the neural tree models is given in Section 3. Section 4 presents some
simulation results for two time-series forecasting problems. Some concluding

remarks are presented in Section 5.
2. Encoding and evaluation

In this research, a tree-structural based encoding method with specific

instruction set is selected for representing a FNT model. The reason for choos-
ing the representation is that the tree can be created and evolved using the

existing or modified tree-structure-based approaches, i.e., genetic programming

(GP) [41], probabilistic incremental program evolution (PIPE) [12], ant pro-

gramming (AP) etc.

2.1. Flexible neuron instructor

The used function set F and terminal instruction set T for generating a FNT
model are described as follows:

S ¼ F [T ¼ fþ2;þ3; . . . ;þNg [fx1; . . . ; xng ð1Þ
where +i (i = 2, 3, . . . , N) denote non-leaf nodes� instructions and taking i argu-

ments. x1, x2,. . ., xn are leaf nodes� instructions and taking no other arguments.

The output of a non-leaf node is calculated as a flexible neuron model (see

Fig. 1). From this point of view, the instruction +i is also called a flexible neu-
ron operator with i inputs.

In the creation process of neural tree, if a non-terminal instruction, i.e., +i

(i = 2, 3, 4, . . . , N) is selected, i real values are randomly generated and used

for representing the connection strength between the node +i and its children.

In addition, two adjustable parameters ai and bi are randomly created as
x1

xn

x2 +n

ω 1

ω n

f(a,b) yω 2

Fig. 1. A flexible neuron operator.

4 Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx

ARTICLE IN PRESS
flexible activation function parameters. In this study the flexible activation

function used is

f ðai; bi; xÞ ¼ e
� x�ai

bi

� �2

ð2Þ
The output of a flexible neuron +n can be calculated as follows. The total exci-

tation of +n is

netn ¼
Xn

j¼1

wj � xj ð3Þ

where xj (j = 1, 2, . . . , n) are the inputs to node +n. The output of the node +n is

then calculated by

outn ¼ f ðan; bn; netnÞ ¼ e�
netn�an

bnð Þ2 ð4Þ
A typical flexible neural tree model is shown as Fig. 2. The overall output of
flexible neural tree can be computed from left to right by depth-first method,

recursively.

2.2. Fitness function

A fitness function maps FNT to scalar, real-valued fitness values that reflect

the FNT�s performances on a given task. Firstly the fitness functions should be

seen as error measures, i.e., MSE or RMSE. A secondary non-user-defined
objective for which algorithm always optimizes FNTs is the size of FNT usu-

ally measured by number of nodes. Among FNTs having equal fitness values
+

x1

x3x2

x1 x2 x3 x3 x2 x1 x3x2

x3x2

Output layer

Second hidden
layer

First hidden layer

Input layer

6

+
3

+3 +2 +3

x1
+

2

Fig. 2. A typical representation of neural tree with function instruction set F = {+2, +3, +4, +5, +6},

and terminal instruction set T = {x1, x2, x3}.

Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx 5

ARTICLE IN PRESS
smaller FNTs are always preferred. In this work, the fitness function used for

the PIPE and SA is given by mean square error (MSE):

FitðiÞ ¼ 1

P

XP
j¼1

ðyj1 � yj2Þ
2 ð5Þ

or root mean squared error (RMSE):

FitðiÞ ¼

ffi
1

P

XP
j¼1

ðyj1 � yj2Þ
2

vuut ð6Þ

where P is the total number of samples, yj1 and yj2 are the actual time-series and

the FNT model output of jth sample. Fit(i) denotes the fitness value of ith

individual.
3. A hybrid learning algorithm

In this study, finding an optimal or near-optimal neural tree structure is

accomplished by using PIPE algorithm and the parameters embedded in a

FNT is optimized by a SA [40].

3.1. Evolving an optimal or near-optimal neural tree structure

PIPE combines probability vector coding of program instructions, popula-

tion-based incremental learning [14], and tree-coded programs. PIPE iteratively
generates successive populations of functional programs according to an adap-

tive probability distribution, represented as a probabilistic prototype tree

(PPT), over all possible programs. Each iteration uses the best program to re-

fine the distribution. Thus, the structures of promising individuals are learned

and encoded in the PPT.

The PPT stores the knowledge gained from experiences with programs

(trees) and guides the evolutionary search. It holds the probability distribution

over all possible programs that can be constructed from a predefined instruc-
tion set. The PPT is generally a complete n-ary tree with infinitely many nodes,

where n is the maximal number of function arguments.

Each node Nj in PPT, with j P 0 contains a variable probability vector P j
!
.

Each P j
!

has n components, where n is the number of instructions in instruction

set S. Each component Pj(I) of P j
!

denotes the probability of choosing instruc-

tion I 2 S at node Nj. Each vector P j
!

is initialized as follows:

P jðIÞ ¼
PT

l
8I : I 2 T ð7Þ

6 Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx

ARTICLE IN PRESS
P jðIÞ ¼
1� PT

k
8I : I 2 F ð8Þ

PIPE combines two forms of learning: generation-based learning (GBL) and

elitist learning (EL). GBL is PIPE�s main learning algorithm. The purpose of

EL is to use the best program found so far as an attractor. PIPE executes as

follows:

GBL

REPEAT

with probability Pel DO EL
otherwise DO GBL

UNTIL termination criterion is reached

Here Pel is a user-defined constant in [0, 1].

Generation-based learning

Step 1. Creation of program population. A population of programs PROGj

(0 < j 6 PS; PS is population size) is generated using the prototype

tree PPT.

Step 2. Population evaluation. Each program PROGj of the current population

is evaluated on the given task and assigned a fitness value FIT(PROGj)

according to the predefined fitness function (Eqs. (5) and (6)). The
best program of the current population (the one with the smallest fit-

ness value) is denoted PROGb . The best program found so far (elitist) is

preserved in P el
ROG.

Step 3. Learning from population. Prototype tree probabilities are modified

such that the probability PðPROGbÞ of creating PROGb increases. This

procedure is called adapting PPT towards (Progb). This is imple-

mented as follows. First P ðPROGbÞ is computed by looking at all

PPT nodes Nj used to generate PROGb :

PðPROGbÞ ¼
Y

j:Nj used to generate PROGb

P jðIjðPROGbÞÞ ð9Þ

where I jðPROGbÞ denotes the instruction of program PROGb at node po-

sition j. Then a target probability PTARGET for PROGb is calculated:

PTARGET ¼ PðPROGbÞ þ ð1� PðPROGbÞÞ � lr �
eþ FITðP el

ROGÞ
eþ FITðPROGbÞ

ð10Þ

Here �lr� is a constant learning rate and e a positive user-defined con-

stant. Given PTARGET, all single node probabilities P jðIjðPROGbÞÞ are
increased iteratively:

Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx 7

ARTICLE IN PRESS
REPEAT:

P jðI jðPROGbÞÞ ¼ P jðIjðPROGbÞÞ þ clr � lr � ð1� P jðIjðPROGbÞÞÞ ð11Þ
UNTIL

P ðPROGbÞ P PTARGET

where clr is a constant influencing the number of iterations. The smal-

ler clr the higher the approximation precision of PTARGET and the

number of required iterations. Setting clr = 0.1 turned out to be a

good compromise between precision and speed. And then all adapted

vectors Pj
!

are renormalized.

Step 4. Mutation of prototype tree. All probabilities Pj(I) stored in nodes Nj

that were accessed to generate program PROGb are mutated with prob-

ability PMp :

PMp ¼
PM

n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPROGb j

p ð12Þ

where the user-defined parameter PM defines the overall mutation
probability, n is the number of instructions in instruction set S and

jPROGb j denotes the number of nodes in program PROGb . Selected

probability vector components are then mutated as follows:

P jðIÞ ¼ P jðIÞ þmr � ð1� P jðIÞÞ ð13Þ
where �mr� is the mutation rate, another user-defined parameter. Also

all mutated vectors P j
!

are renormalized.

Step 5. Prototype tree pruning. At the end of each generation the prototype
tree is pruned. PPT subtrees attached to nodes that contain at least

one probability vector component above a threshold TP can be

pruned.

Step 6. Termination criteria. Repeat above procedure until a fixed number of

program evaluations is reached or a satisfactory solution is found.

Elitist learning

Elitist learning focuses search on previously discovered promising parts of

the search space. The PPT is adapted towards the elitist program P el
ROG. This

is realized by replacing the PROGb with P el
ROG in learning from population in

Step 3. It is particularly useful with small population sizes and works efficiently

in the case of noise-free problems.

In order to learn the structure and parameters of a FNT simultaneously
there is a tradeoff between the structure optimization and parameter learning.

8 Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx

ARTICLE IN PRESS
In fact, if the structure of the evolved model is not appropriate, it is not useful

to pay much attention to the parameter optimization. On the contrary, if the

best structure has been found, further structure optimization may destroy

the best structure. In this paper, a technique for balancing the structure opti-

mization and parameter learning is proposed. If the better structure is found

then do local search (simulated annealing) for a number of steps (maximum al-
lowed steps) or stop in case no better parameter vector is found for a signifi-

cantly long time (say 100–2000 in our experiments). The criterion of better

structure is distinguished as follows: if the fitness value of the best program

is smaller than the fitness value of the elitist program, or the fitness values of

two programs are equal but the nodes of the former is lower than the later,

then we say that the better structure is found.

3.2. Parameter optimization

To find the optimal parameters set (weights and activation function param-

eters) of a FNT model, a number of global and local search algorithms namely

genetic algorithm, evolutionary programming, gradient based learning method

etc. can be employed. A variant of simulated annealing (called degraded ceil-

ing) is selected due to its straightforward property and fast local search capa-

bility [15].

Simulated annealing is one of the most widely studied local search meta-
heuristics. It was proposed as a general stochastic optimization technique in

1983 [16] and has been applied to solve a wide range of problems including con-

nection weights optimization of a neural network.

The basic ideas of the simulated annealing search are that it accepts worse

solutions with a probability p ¼ e�
d
T , where d = f(s*) � f(s), the s and s* are

the old and new solution vectors, f(s) denotes the cost function, the parameter

T denotes the temperature in the process of annealing. Originally it was sug-

gested to start the search from a high temperature and reduce it to the end
of the process by a formula: Ti+1 = Ti � Ti * b. However, the cooling rate b
and initial value of T should be carefully selected due to it is problem

dependent.

The degraded ceiling algorithm also keeps the acceptance of worse solutions

but with a different manner. It accepts every solution whose objective function

is less than or equal to the upper limit B, which is monotonically decreased dur-

ing the search. The procedure of the degraded ceiling algorithm is given in Fig.

3.

3.3. The general learning algorithm

The general learning procedure for designing a FNT model may be de-

scribed as follows.

Set the initial solution S
Calculate initial fitness function f(s)
Initial ceiling B=f(s)
Specify input parameter dB
While not some stopping condition do
 define neighbourhood N(s)
 Randomly select the candidate solution s* in N(s)
 If (f(s*) < f(s)) or (f(s*) <= B)
 Then accept s*

Fig. 3. The Degraded ceiling algorithm.

Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx 9

ARTICLE IN PRESS
1. Set the initial values of parameters used in the PIPE and SA algorithms. Set

the elitist program as NULL and its fitness value as a biggest positive real

number of the computer at hand. Create the initial population (flexible neu-

ral trees and their corresponding parameters).

2. Structure optimization by PIPE algorithm as described in Section 3.1 in

which the fitness function is calculated by mean square error (MSE) or root
mean square error (RMSE).

3. If the better structure is found, then go to step 4, otherwise go to step 2.

4. Parameter optimization is achieved by the degraded ceiling algorithm as

described in Section 3.2. In this stage, the tree structure or architecture of

flexible neural tree model is fixed, and the best tree is taken from the end

of run of the PIPE search. All the parameters used in the best tree formu-

lated a parameter vector to be optimized by local search.

5. If the maximum number of iterations of SA algorithm is reached, or no bet-
ter parameter vector is found for a significantly long time (100 steps) then go

to step 6; otherwise go to step 4.

6. If satisfactory solution is found, then stop; otherwise go to step 2.
4. Experimental results and illustrative examples

The developed flexible neural tree model is applied here in conjunction with

two time-series prediction problems: Box–Jenkins and Mackey-Glass chaotic

time series. Well-known benchmark examples are used for the sake of easy

comparison with existing models. The data related to the examples are avail-

able on the web site of the Working Group on Data Modeling Benchmark—

IEEE Neural Network Council [17].

For each benchmark problem, two experimental simulations are carried out.

The first one use the same inputs with other models so as to make a meaningful
comparison. The second one use a large number of input variables in order the

Table 1

Parameters used in the flexible neural tree model

Parameter Initial value

Population size, PS 30

Elitist learning probability, Pel 0.01

Learning rate, lr 0.01

Fitness constant, e 0.000001

Overall mutation probability, PM 0.4

Mutation rate, mr 0.4

Prune threshold, TP 0.999999

Maximum local search steps 2000

Initial connection weights rand[�1, 1]

Initial parameters, ai and bi rand[0, 1]

10 Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx

ARTICLE IN PRESS
FNT to select proper input variables or time-lags automatically. In addition,

the parameters used for each experiment is listed in Table 1.

4.1. Application to Jenkins–Box time series

The gas furnace data (series J) of Box and Jenkins (1970) was recorded from

a combustion process of a methane–air mixture. It is well known and fre-

quently used as a benchmark example for testing identification and prediction
algorithms. The data set consists of 296 pairs of input-output measurements.

The input u(t) is the gas flow into the furnace and the output y(t) is the CO2

concentration in outlet gas. The sampling interval is 9 s.

4.1.1. Case 1

The inputs for constructing FNT model are u(t � 4) and y(t � 1), and the

output is y(t).

In this study, 200 data samples are used for training and the remaining data
samples are used for testing the performance of the evolved model. The used

instruction set for creating a FNT model is S = F [T = {+2, +3, . . . , +8} [
{x1, x2}. Where x1 and x2 denotes the input variables u(t � 4) and y(t � 1),

respectively.

After 37 generations, the optimal neural tree model was obtained with the

MSE 0.000664. The MSE value for validation data set is 0.000701. The evolved

neural tree is shown in Fig. 4 (left) and the actual time-series, the FNT model

output and the prediction error is shown in Fig. 4 (right).

4.1.2. Case 2

For the second simulation, 10 inputs variables are used for constructing a

FNT model. The proper time-lags for constructing a FNT model are finally

determined by an evolutionary procedure.

x2 x2

4

3 2

2

x1 x1

x1 x2

2

x1 x2

2
x2

real output
model output
error

0
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

50 100 150

time

ou
tp

ut
 a

nd
 e

rr
or

200 250 300

Data for training Data for testing

Fig. 4. Case 1: The evolved FNT model for prediction of Jenkins–Box data (left), and the actual

time-series data, output of the evolved FNT model and the prediction error for training and test

samples (right).

Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx 11

ARTICLE IN PRESS
The used instruction sets to create an optimal neural tree model is

S = F [T = {+2, . . . , +8} [{x1, x2, . . . , x10}, where xi (i = 1, 2, . . . , 10) denotes
u(t � 6), u(t � 5), u(t � 4), u(t � 3), u(t � 2), u(t � 1) and y(t � 1), y(t � 2),

y(t � 3), y(t � 4), respectively.

After 17 generations of the evolution, the optimal neural tree model was ob-

tained with MSE 0.000291. The MSE value for validation data set is 0.000305.
Fig. 5. Case 2: The evolved neural tree model for prediction of Jenkins–Box data (left), and the

actual time series data, output of the evolved neural tree model and the prediction error for training

and test samples (right).

Table 2

Comparison of prediction errors using different methods for the gas furnace data

Model name and reference Number of inputs MSE

ARMA [18] 5 0.71

Tong�s model [19] 2 0.469

Pedrycz�s model [20] 2 0.320

Xu�s model [21] 2 0.328

Sugeno�s model [22] 2 0.355

Surmann�s model [23] 2 0.160

TS model [24] 6 0.068

Lee�s model [25] 2 0.407

Hauptmann�s model [26] 2 0.134

Lin�s model [27] 5 0.261

Nie�s model [28] 4 0.169

ANFIS model [29] 2 0.0073

FuNN model [30] 2 0.0051

HyFIS model [31] 2 0.0042

FNT model (Case 1) 2 0.00066

FNT model (Case 2) 7 0.00029

12 Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx

ARTICLE IN PRESS
The evolved FNT is shown in Fig. 5 (left) and the actual time-series, the FNT

model output and the prediction error is shown in Fig. 5 (right). From the

evolved FNT tree, it can be seen that the optimal inputs variables for con-

structing a FNT model are: u(t � 6), u(t � 5), u(t � 3), y(t � 1), y(t � 2),

y(t � 3) and y(t � 4). It should be noted that the FNT model with proper se-

lected input variables has accurate precision and good generalization ability.

A comparison result of different methods for forecasting Jenkins–Box data is

shown in Table 2.

4.2. Application to Mackey-Glass time-series

The chaotic Mackey-Glass differential delay equation is recognized as a

benchmark problem that has been used and reported by a number of research-

ers for comparing the learning and generalization ability of different models.

The Mackey-Glass chaotic time series is generated from the following

equation:

dxðtÞ
dt

¼ axðt � sÞ
1þ x10ðt � sÞ � bxðtÞ ð14Þ

where s > 17, the equation shows chaotic behavior.

4.2.1. Case 1

To make the comparison with earlier work fair, we predict the x(t + 6) with

using the inputs variables x(t), x(t � 6), x(t � 12) and x(t � 18). 1000 sample

Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx 13

ARTICLE IN PRESS
points used in our study. The first 500 data pairs of the series were used as

training data, while the remaining 500 were used to validate the model

identified.

The used instruction sets to create an optimal FNT model is

S = F[T = {+5, . . . , +10}[{x1, x2, x3, x4}, where xi (i = 1, 2, 3, 4) denotes x(t),

x(t � 6), x(t � 12) and x(t � 18), respectively.
After 135 generations of the evolution, an optimal FNT model was obtained

with RMSE 0.006901. The RMSE value for validation data set is 0.007123.

The evolved FNT is shown in Fig. 6 (left). The actual time-series data, the out-

put of FNT model and the prediction error are shown in Fig. 6 (right). A com-

parison result of different methods for forecasting Mackey-Glass data is shown

in Table 3.

4.2.2. Case 2

For the second simulation, 19 inputs variables are used for constructing a

FNT model. The proper time-lags for constructing a FNT model are finally

determined by an evolutionary procedure.

The used instruction sets to create an optimal neural tree model is

S = F [T = {+2, . . . , +8} [{x1, x2, . . . , x19}, where xi(i = 1, 2, . . . , 19) denotes
x(t � 18), x(t � 17), . . ., x(t � 1) and x(t), respectively.

The optimal neural tree model was obtained with RMSE 0.00271. The

RMSE value for validation data set is 0.00276. The evolved FNT is shown
in Fig. 7 (left) and the actual time-series, the FNT model output and the pre-

diction error is shown in Fig. 7 (right). From the evolved FNT, it can be seen
Fig. 6. Case 1: The evolved neural tree model for prediction of the Mackey-Glass time-series (left),

and the actual time series data, output of the evolved neural tree model and the prediction error

(right).

Table 3

Comparison of prediction error using different methods for the Mackey-Glass time-series problem

Method Prediction error (RMSE)

Autoregressive model 0.19

Cascade correlation NN 0.06

Back-propagation NN 0.02

Sixth-order polynomial 0.04

Linear prediction method 0.55

ANFIS and Fuzzy System [29] 0.007

Wang et al. [33] Product T-norm 0.0907

Classical RBF (with 23 neurons) [32] 0.0114

PG-RBF network [34] 0.0028

Genetic algorithm and fuzzy system [35] 0.049

FNT model (Case 1) 0.0069

FNT model (Case 2) 0.0027

Fig. 7. Case 2: The evolved neural tree model for prediction of the Mackey-Glass time-series (left),

and the actual time series data, output of the evolved neural tree model and the prediction error

(right).

14 Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx

ARTICLE IN PRESS
that the optimal inputs variables for constructing a FNT model are: x(t � 13),

x(t � 12), x(t � 11), x(t � 10), x(t � 9), x(t � 2) and x(t). That is, for the pre-

diction of x(t + 6), among the time-lags from 0 to 18, the automatically evolved

time-lags are 13, 12, 11, 10, 9, 2 and 0. It should be noted that the FNT model

with proper selected time-lags as input variables has accurate precision and

good generalization ability. A comparison result of different methods for fore-

casting Mackey-Glass data is shown in Table 3.

From the above simulation results, it can be seen that the proposed FNT
model works well for generating prediction models of time series.

Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx 15

ARTICLE IN PRESS
5. Concluding remarks

A new time-series forecasting model based on flexible neural tree is proposed

in this paper. From the architecture perspective, a FNT can be seen as a flexible

multi-layer feedforward neural network with over-layer connections and free

parameters in activation functions. The work demonstrates that the FNTmodel
with automatically selected input variables (time-lags) has better accuracy (low

error) and good generalization ability. Simulation results for the time-series fore-

casting problems shown the feasibility and effectiveness of the proposedmethod.
Acknowledgment

This research was partially supported by the National Natural Science
Foundation of China (NSFC), Project No. 69902005 and Provincial Natural

Science Foundation of Shandong, Project No. Y2001G09.
References

[1] S. Omatu, Marzuki Khalid, Rubiyah Yusof, Neuro-Control and its Applications, Springer

Publisher, 1996.

[2] S.E. Fahlman, Christian Lebiere, The cascade-correlation learning architecture, Advances in

Neural Information Processing Systems 2 (1990) 524–532.

[3] J.-P. Nadal, Study of a growth algorithm for a feedforward network, International Journal of

Neural Systems 1 (1989) 55–59.

[4] R. Setiono, L.C.K. Hui, Use of a quasi-Newton method in a feedforward neural network

construction algorithm, IEEE Transactions on Neural Networks 6 (1995) 273–277.

[5] P.J. Angeline, Gregory M. Saunders, Jordan B. Pollack, An evolutionary algorithm that

constructs recurrent neural networks, IEEE Transactions on Neural Networks 5 (1994) 54–65.

[6] X. Yao, Y. Liu, A new evolutionary system for evolving artificial neural networks, IEEE

Transactions on Neural Networks 8 (1997) 694–713.

[7] X. Yao, Evolving artificial neural networks, Proceedings of the IEEE 87 (1999) 1423–1447.

[8] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE Transactions on

Evolutionary Computation 3 (1999) 82–102.

[9] Kenneth O. Stanley, Risto Miikkulainen, Evolving neural networks through augmenting

topologies, Evolutionary Computation 10 (2002) 99–127.

[10] B.T. Zhang, P. Ohm, H. Muhlenbein, Evolutionary induction of sparse neural trees,

Evolutionary Computation 5 (1997) 213–236.

[11] G. Peter Zhang, Time series forecasting using a hybrid ARIMA and neural network model,

Neurocomputing 50 (2003) 159–175.

[12] R.P. Salustowicz, J. Schmidhuber, Probabilistic Incremental Program Evolution, Evolutionary

Computation 2 (5) (1997) 123–141.

[13] Y. Chen, S. Kawaji, System identification and control using probabilistic incremental program

evolution algorithm, Journal of Robotics and Machatronics 12 (2000) 675–681.

[14] S. Baluja, Population-based incremental learning: a method for integrating genetic search

based function optimization and competitive learning, Technical Report CMU-CS-94-163,

Carnegie Mellon University, Pittsburgh, 1994.

16 Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx

ARTICLE IN PRESS
[15] E.K. Burke, Y. Bykov, J.P. Newall, S. Petrovic, A new local search approach with execution

time as an input parameter, Technical Report No. NOTTCS-TR-2002-3, School of Computer

Science and Information Technology, University of Nottingham, 2002.

[16] S. Kirkpatrick Jr., C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Science

220 (1983) 671–680.

[17] Working Group on Data Modeling Benchmark, Standard Committee of IEEE Neural

Network Council. <http://neural.cs.nthu.edu.tw/jang/benchmark/>, 2004 (accessed 14.10.04).

[18] G.E.P. Box, Time Series Analysis, Forecasting and Control, Holden Day, San Francisco, 1970.

[19] R.M. Tong, The evaluation of fuzzy models derived from experimental data, Fuzzy Sets and

Systems 4 (1980) 1–12.

[20] W. Pedtycz, An identification algorithm in fuzzy relational systems, Fuzzy Sets and Systems 13

(1984) 153–167.

[21] C.W. Xu, Y.Z. Lu, Fuzzy model identification and self-learning for dynamic systems, IEEE

Transactions on Systems, Man and Cybernetics 17 (1987) 683–689.

[22] M. Sugeno, T. Takagi, Linguistic modelling based on numerical data, Proceedings of the

IFSA�91, 1991.
[23] H. Surmann, A. Kanstein, K. Goser, Self-organising and genetic algorithm for an automatic

design of fuzzy control and decision systems, Proceedings of the FUFIT�s93 (1993) 1079–1104.

[24] M. Sugeno, T. Takagi, A fuzzy-logic approach to qualitative modeling, IEEE Transactions on

Fuzzy Systems 1 (1993) 7–31.

[25] Y.-C. Lee, E. Hwang, Y.-P. Shih, A combined approach to fuzzy model identification, IEEE

Transactions on Systems, Man and Cybernetics 24 (1994) 736–744.

[26] W. Hauptmann, A neural net topology for bidirectional fuzzy-neuro transformation,

Proceedings of the IEEE International Conference on Fuzzy Systems (1995) 1511–1518.

[27] Y. Lin, G.A. Cunningham, A new approach to fuzzy-neural system modelling, IEEE

Transactions on Fuzzy Systems 3 (1995) 190–197.

[28] J. Nie, Constructing fuzzy model by self-organising counter propagation network, IEEE

Transactions on Systems Man and Cybernetics 25 (1995) 963–970.

[29] J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-fuzzy and soft computing: a computational

approach to learning and machine intelligence, Prentice-Hall, Upper Saddle River, NJ, 1997.

[30] N. Kasabov, J.S. Kim, M. Watts, A. Gray, FuNN/2—a fuzzy neural network architecture for

adaptive learning and knowledge acquisition, Information Science 101 (1996) 155–175.

[31] J. Kim, N. Kasabov, HyFIS: adaptive neuro-fuzzy inference systems and their application to

nonlinear dynamical systems, Neural Networks 12 (1999) 1301–1319.

[32] K.B. Cho, B.H. Wang, Radial basis function based adaptive fuzzy systems their application to

system identification and prediction, Fuzzy Sets and Systems 83 (1995) 325–339.

[33] L.X. Wang, J.M. Mendel, Generating fuzzy rules by learning from examples, IEEE

Transactions on Systems, Man and Cybernetics 22 (1992) 1414–1427.

[34] I. Rojas, H. Pomares, J. Luis Bernier et al., Time series analysis using normalized PG-RBF

network with regression weights, Neurocomputing 42 (2002) 267–285.

[35] D. Kim, C. Kim, Forecasting time series with genetic fuzzy predictor ensembles, IEEE

Transactions on Fuzzy Systems 5 (1997) 523–535.

[36] X. Li, W. Yu, Dynamic system identification via recurrent multilayer perceptions, Information

Science 147 (2002) 45–63.

[37] J.-H. Horng, Neural adaptive tracking control of a DC motor, Information Sciences 118

(1999) 1–13.

[38] H. Kirschner, R. Hillebr, Neural networks for HREM image analysis, Information Sciences

129 (2000) 31–44.

[39] A.F. Sheta, K.D. Jong, Time-series forecasting using GA-tuned radial basis functions,

Information Science 133 (2001) 221–228.

http://neural.cs.nthu.edu.tw/jang/benchmark/

Y. Chen et al. / Information Sciences xxx (2004) xxx–xxx 17

ARTICLE IN PRESS
[40] L. Snchez, I. Cousob, J.A. Corrales, Combining GP operators with SA search to evolve fuzzy

rule based classifiers, Information Sciences 136 (2001) 175–191.

[41] Y.S. Yeun, J.C. Suh, Y.S. Yang, Function approximations by superimposing genetic

programming trees: with applications to engineering problems, Information Sciences 122

(2000) 259–280.

	Time-series forecasting using flexible neural tree model
	Introduction
	Encoding and evaluation
	Flexible neuron instructor
	Fitness function

	A hybrid learning algorithm
	Evolving an optimal or near-optimal neural tree structure
	Parameter optimization
	The general learning algorithm

	Experimental results and illustrative examples
	Application to Jenkins ndash Box time series
	Case 1
	Case 2

	Application to Mackey-Glass time-series
	Case 1
	Case 2

	Concluding remarks
	Acknowledgment
	References

